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vertices and 𝐸 is a set of pairs of 
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A graph is a pair 𝐺=(𝑉,𝐸)  where 𝑉 is 

a set whose elements are called 

vertices and 𝐸 is a set of pairs of 

vertices whose elements are called 

edges

A molecule can be naturally 
represented as a graph in which the 
set of nodes is the set of atoms and 
the set of edges is the set of bonds

Molecule -> Graph



Each node is equipped with a 
feature vector

A graph can be seen as a pair of 
matrices (F, A) where F is the 
feature matrix (containing single 
node information) and A is the 
adjacency matrix (containing 
neighbourhood information)

Molecule -> Graph



A GNN-based approach

The model is fed with a molecular 
dataset and learns its latent 
distribution (i.e. the generated 
molecules can reasonably belong 
to the given dataset)



The generation is conditioned 
towards the optimization of 
desired (numerical) properties 
(such as QED, SAS, biological 
activity)

A GNN-based approach



This is obtained using Graph 
Neural Networks which rely on 
message passing modules

A GNN-based approach



Message Passing Neural Networks

A general framework for GNNs

All the main currently available 
GNN-based generative methods for 
molecular graphs are MPNNs



Message Passing Neural Networks

The information ℎ𝑖
𝑙+1 at each node at 

step 𝑙 + 1 is obtained by the 
information present in its neighbors 
at step 𝑙



Message Passing Neural Networks

The information ℎ𝑖
𝑙+1 at each node at 

step 𝑙 + 1 is obtained by the 
information present in its neighbors 
at step 𝑙

A message passing module updates 
the information as follows:



A GNN-based approach

Abate, C, Decherchi, S, Cavalli, A. Graph neural networks for conditional de novo drug design.
WIREs Comput Mol Sci. 2023; 13(4):e1651. https://doi.org/10.1002/wcms.1651
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A GNN-based approach

It is the foundational architecture 
that defines how the model learns

Both derives from and impacts 
the other, task-specific modeling 
choices



A GNN-based approach

Determines the way the 
generation process is modeled

Offers a trade-off between 
generation speed and structural 
control



A GNN-based approach

One-shot:

Sequential:

𝑝𝜃 𝐺 = 𝑝𝜃 𝐺 𝒛  

𝑝𝜃(𝐺) = ς𝑡 𝑝𝜃 𝑎𝑡 𝐺𝑡 , … , 𝐺0)



A GNN-based approach

Defines the meaning of every 
node of the graph

It affects how the model explores 
the chemical space and its ability 
to generate realistic structures.



A GNN-based approach

The model learns to incorporate 
property objectives during 
training through conditional 
vectors, rewards, or auxiliary 
losses

The generation is first performed 
unconditionally, then the latent 
space is navigated to find 
molecules with desired properties

Training time:

Ex-post:



A GNN-based approach

Ensures generated molecules 
obey chemical rules and 
constraints

Can be implemented through 
learning or post-processing 
approaches
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AMCG framework



AMCG framework

Features

• Modularity

• Scalability

• No max number of atoms

• Conditionability wrt atom types histogram

• Conditionability wrt molecular properties

Main idea

Navigable latent space («VAE-like») embedding for molecular graphs

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73


Training process

We make use of a self-distilling approach



Training process

The teacher branch of the network uses all the available information

Quick learner - loss fast to converge Hard to control 



Training process

The student branch of the network uses only the molecular representation

Hard to train Easy to control – standard conditioning techniques 



Training process

Main idea

• Using the (easy-to-train) teacher to guide the student model a molecular latent space



Training process

Main idea

• Using the (easy-to-train) teacher to guide the student model a molecular latent space

• Using the (easy-to-control) student to condition the generation towards the 
optimization of desired properties



Generation process



Generation process

Classical VAEs sample from a unit Gaussian.

We utilize Gaussian Mixture Models (GMMs). 

• Overall model easier to train

• Enables conservative and explorative generation

• Fast (with respect to diffusion in latent space)
stop here
instead

don’t go 
here!



Sampling the right space

• VAE: unit Gaussian centered in 0
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Sampling the right space

• VAE: unit Gaussian centered in 0

• VAE-like: single Gaussian centered in 𝜇 with 
diagonal covariance matrix

• GMM-D: combination of multiple Gaussians 
with diagonal covariance matrices

• GMM-F: combination of multiple Gaussians 
with full covariance matrices

• GMM-PW: combination of a Gaussian per 
data point, with diagonal covariance matrix 



Generation process
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• ~130k  small organic molecules

• 4 atom types (C, O, N, F)

• 58 atomic features

• 13 bond features

• 19 annotated properties

Learning QM9 dataset



VUN assessment

By leveraging GMM priors, we are able to perform competitively or better than 
state-of-the-art latent variable models: 



By leveraging GMM priors, we are able to perform competitively or better than 
state-of-the-art latent variable models: 

GMM priors help exploring the latent space

VUN assessment



By leveraging GMM priors, we are able to perform competitively or better than 
state-of-the-art latent variable models: 

Low validity rate → Fast resampling

VUN assessment



Can resampling cause trouble?

With more explorative priors, the 
model is able to keep a steady ratio of 
unique novel molecules



Can resampling cause trouble?

The generated molecules follow the 
original molecular property distributions



Property optimization

We can see a shift in the molecular 
property distributions 



• ~250k  molecules

• 9 atom types (C, O, N, F, P, S, Cl, Br, I)

• 58 atomic features

• 13 bond features

• 3 annotated properties

Learning ZINC dataset



• AMCG shows promising results, with a 
steady UN ratio and a competing VUN 
for the GMM-D prior

• However, the lower validity rates and 
the smaller molecular weight show 
room for improvement

Learning ZINC dataset



Learning ZINC dataset

Possible solutions

• More expressive encoders, requiring 
less information and smaller latent 
spaces → graph pooling techniques



Learning ZINC dataset

Possible solutions

• More expressive encoders, requiring 
less information and smaller latent 
spaces → graph pooling techniques

• Different decoding strategies and 
training objectives



• Several approaches for molecular 
graph generation are available

Summary



• Several approaches for molecular 
graph generation are available

• No free lunch theorem applies, 
but careful design choices enable 
the selection of the right trade-
off for specific molecular design 
challenges

Summary



• Several approaches for molecular 
graph generation are available

• No free lunch theorem applies, 
but careful design choices enable 
the selection of the right trade-
off for specific molecular design 
challenges

• As an example, we introduced 
AMCG model, deliberately 
trading-off validity for speed and 
fantasy

Summary



Thank you
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