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® Part I: Introduction to GNNs for conditional de novo drug design



There are several ways
to represent a
molecule
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There are several ways
to represent a
molecule

Let’s focus on
molecular graphs

Molecule -> Graph

1) SMILES
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A graphis a pair G=(V,E) where V'is
a set whose elements are called
vertices and E is a set of pairs of
vertices whose elements are called
edges
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Molecule -> Graph

1) SMILES
A graphis a pair G=(V,E) where V'is CC(=0)NC1=CC=C(C=C1)0
a set whose elements are called
vertices and E is a set of pairs of
vertices whose elements are called
edges

5) Molecular graph
A molecule can be naturally
represented as a graph in which the
set of nodes is the set of atoms and
the set of edges is the set of bonds
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Molecule -> Graph

ABCODE
A0 O OO 1
Each node is equipped with a E g g g i i
feature vector S
hocl 8 0 o A |-11/32 |42
E11110
B |04 (51 -1
Adjacency matrix 4
Cc (12 |13 |21
A graph can be seen as a pair of ABCODE o Sl Ml
matrices (F, A) where F is the A1 000 O] EE
feature matrix (containing single 8102000 Feature vector X
node information) and A is the Graph G €910 12,00
adjacency matrix (containing E g g g 3 2

neighbourhood information)

Degree matrix D



A GNN-based approach

The model is fed with a molecular
dataset and learns its latent
distribution (i.e. the generated
molecules can reasonably belong
to the given dataset)

GNN-based
deep learning
framework

Desired
properties

Message
passing

Active
compound




A GNN-based approach

The generation is conditioned
towards the optimization of
desired (numerical) properties
(such as QED, SAS, biological
activity)
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A GNN-based approach

Message
passing

This is obtained using Graph
Neural Networks which rely on 1

message passing modules

GNN-based
deep learning
framework

compound

Desired
properties




Message Passing Neural Networks

h
A general framework for GNNs \

All the main currently available O‘ -

GNN-based generative methods for
molecular graphs are MPNNs

[-th propagation step



Message Passing Neural Networks

The information hi*! at each node at

step | + 1is obtained by the G = T
. . ejj X 1y
information present in its neighbors \ /" /

at step [

[-th propagation step



Message Passing Neural Networks

The information hi ™ at each node at .

step [ + 1 is obtained by the R = m O
information present in its neighbors \ ’ / } O
at step [ /

A message passing module updates O =
the information as follows: 0

_ I i :
—Mg(a: x; a@j,ezj,hz,hj) input

jis Uj S N(UZ))
= Uj(x;, hl, m})
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A GNN-based approach
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Abate, C, Decherchi, S, Cavalli, A. Graph neural networks for conditional de novo drug design.
WIREs Comput Mol Sci. 2023; 13(4):e1651. https://doi.org/10.1002/wcms.1651
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A GNN-based approach
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A GNN-based approach

Learning

framework .
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A GNN-based approach

One-shot:
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A GNN-based approach
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A GNN-based approach
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A GNN-based approach

Learning
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Outline

® Part II: AMCG: A dual Atomic-Molecular Conditional Generator



AMCG framework
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AMCG framework

Main idea

Navigable latent space («VAE-like») embedding for molecular graphs

Features

neural network neural network

encoder decoder

[T T TTTT]

Modularity
Scalability R=d(2)

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

No max number of atoms
Conditionability wrt atom types histogram

Conditionability wrt molecular properties


https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Training process

Initial atomic Final atomic Shared Reconstructed

representation decoder molecular graph

representation

Original
molecular

graph

Molecular
representation

Molecular Surrogate atomic Shared Reconstructed

decoder representation decoder molecular graph

We make use of a self-distilling approach




Training process

Initial atomic
representation

Final atomic Shared Reconstructed
representation decoder molecular graph

Original
molecular
graph
Molecutar Molecular Surrogate atomic Shared Reconstructed
representation [ » e » e » e »
decoder representation decoder molecular graph

The teacher branch of the network uses all the available information

Quick learner - loss fast to converge Hard to control




Original
molecular
graph

Training process

Initial atomic
representation

Molecular
representation

» Combiner
Molecular
decoder

Final atomic Shared Reconstructed

representation decoder molecular graph

Surrogate atomic Shared Reconstructed
representation decoder molecular graph

The student branch of the network uses only the molecular representation

Hard to train

Easy to control — standard conditioning techniques




Training process

Initial atomic
representation

Final atomic Shared Reconstructed
representation decoder molecular graph

Original
molecular
graph
Molecular Molecular Surrogate atomic Shared Reconstructed
representation -
decoder representation decoder molecular graph
Main idea

* Using the (easy-to-train) teacher to guide the student model a molecular latent space



Original
molecular
graph

Main idea

Tralning process

Initial atomic
representation

Molecular
representation

Final atomic Shared
representation decoder

Reconstructed
molecular graph

Molecular
decoder

Surrogate atomic
representation

Shared
decoder

Reconstructed
molecular graph

* Using the (easy-to-train) teacher to guide the student model a molecular latent space

* Using the (easy-to-control) student to condition the generation towards the
optimization of desired properties




Generation process

Molecular
latent space

— P,

Molecular
embedding

Molecular
graph




Generation process

Molecular
latent space

—p

Molecular
embedding

Decode ——p»

Classical VAEs sample from a unit Gaussian.

We utilize Gaussian Mixture Models (GMMs).

e Qverall model easier to train

* Enables conservative and explorative generation

* Fast (with respect to diffusion in latent space)
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graph
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Sampling the right space

VAE VAE-like

 VAE: unit Gaussian centeredin 0



Sampling the right space

VAE VAE-like GMM-D

VAE: unit Gaussian centered in 0

* VAE-like: single Gaussian centered in u with
diagonal covariance matrix



Sampling the right space

VAE VAE-like GMM-D

* VAE: unit Gaussian centered in 0 * GMM-D: combination of multiple Gaussians

with diagonal covariance matrices
* VAE-like: single Gaussian centered in u with

diagonal covariance matrix



Sampling the right space

VAE VAE-like GMM-D

VAE: unit Gaussian centered in 0 * GMM-D: combination of multiple Gaussians
with diagonal covariance matrices

* VAE-like: single Gaussian centered in u with

diagonal covariance matrix *  GMM-F: combination of multiple Gaussians

with full covariance matrices



Sampling the right space

VAE VAE-like GMM-D

VAE: unit Gaussian centered in 0 *  GMM-D: combination of multiple Gaussians

with diagonal covariance matrices
* VAE-like: single Gaussian centered in u with

diagonal covariance matrix * GMM-F: combination of multiple Gaussians
with full covariance matrices

* GMM-PW: combination of a Gaussian per
data point, with diagonal covariance matrix



Generation process

Molecular Molecular Molecular
—p Sample —P _ Decode
latent space embedding graph

Atom-types . . .. . .
. . .. —»| Atom-wise sampling —»| Connectivity prediction ——| Bond type prediction
histogram prediction
0 1 0 S D T A
[C N O F] (1 0 1) 1 0 0 0
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Learning QMg dataset

~130k small organic molecules

4 atom types (C, O, N, F)

58 atomic features

13 bond features

19 annotated properties



VUN assessment

By leveraging GMM priors, we are able to perform competitively or better than
state-of-the-art latent variable models:

Model Validity Validity w/o check Uniqueness Novelty VUN

MPG-VAE - 0.9100 0.6800 0.540 0.3340
GraphNVP - 0.8310 0.9920 0.582 0.4797
GRF - 0.8450 0.6600 0.586 0.3268
GraphAF 1.000 0.6700 0.9451 0.8883 0.8395
MoFlow 1.000 0.8896 0.9853 0.9604 0.9462
GraphDF 1.000 0.8267 0.9762 0.9810 0.9576
Ours - VAE 1.000 0.4006 0.1293 0.8987 0.1162
Ours - VAE-like  1.000 0.5803 0.7756 0.8829 0.6848
Ours - GMM-F 1.000 0.4075 0.9428 0.8001 0.7543
Ours - GMM-D1  1.000 0.1653 0.9693 0.9640 0.9344

Ours - GMM-D2  1.000 0.0555 0.9982 0.9964 0.9946




VUN assessment

By leveraging GMM priors, we are able to perform competitively or better than
state-of-the-art latent variable models:

Model Validity Validity w/o check Uniqueness Novelty VUN

MPG-VAE - 0.9100 0.6800 0.540 0.3340
GraphNVP - 0.8310 0.9920 0.582 0.4797
GRF - 0.8450 0.6600 0.586 0.3268
GraphAF 1.000 0.6700 0.9451 0.8883 0.8395
MoFlow 1.000 0.8896 0.9853 0.9604 0.9462
GraphDF 1.000 0.8267 0.9762 0.9810 0.9576
Ours - VAE 1.000 0.4006 0.1293 0.8987 0.1162
Ours - VAE-like  1.000 0.5803 0.7756 0.8829 0.6848
Ours - GMM-F 1.000 0.4075 0.9428 0.8001 0.7543
Ours - GMM-D1  1.000 0.1653 0.9693 0.9640 0.9344
Ours - GMM-D2  1.000 0.0555 0.9982 0.9964 0.9946

GMM priors help exploring the latent space



VUN assessment

By leveraging GMM priors, we are able to perform competitively or better than
state-of-the-art latent variable models:

Model Validity Validity w/o check Uniqueness Novelty VUN

MPG-VAE - 0.9100 0.6800 0.540 0.3340
GraphNVP - 0.8310 0.9920 0.582 0.4797
GRF - 0.8450 0.6600 0.586 0.3268
GraphAF 1.000 0.6700 0.9451 0.8883 0.8395
MoFlow 1.000 0.8896 0.9853 0.9604 0.9462
GraphDF 1.000 0.8267 0.9762 0.9810 0.9576
Ours - VAE 1.000 0.4006 0.1293 0.8987 0.1162
Ours - VAE-like  1.000 0.5803 0.7756 0.8829 0.6848
Ours - GMM-F 1.000 0.4075 0.9428 0.8001 0.7543
Ours - GMM-D1  1.000 0.1653 0.9693 0.9640 0.9344
Ours - GMM-D2  1.000 0.0555 0.9982 0.9964 0.9946

Low validity rate = Fast resampling



Can resampling cause trouble?

51 —— VAE-like

—— GMM-F \
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T
0

With more explorative priors, the
model is able to keep a steady ratio of
unique novel molecules

T T T T T
20 40 60 80 100

# Samples / 2000



Can resampling cause trouble?

The generated molecules follow the
original molecular property distributions
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Property optimization

We can see a shift in the molecular
property distributions

Density

20 V: 0.7184 0: 0.7358 S:0.5280 D: 0.2001

M [ Original
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Learning ZINC dataset

~250k molecules

g atomtypes (C,O, N, F, P, S, Cl, Br, 1)

58 atomic features

13 bond features

3 annotated properties



Learning ZINC dataset

AMCG shows promising results, with a

Validity Validity w/o check Uniqueness Novelty VUN

steady UN ratio and a competing VUN
for the GMM-D prior

However, the lower validity rates and
the smaller molecular weight show
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Learning ZINC dataset

Possible solutions

Validity Validity w/o check Uniqueness Novelty VUN

More expressive encoders, requiring
less information and smaller latent

spaces =2 graph pooling techniques

- 0.426 0.948 1.000 0.4038

- 0.734 0.537 1.000 0.3942

1.000 0.68 0.991 1.000 0.9910

1.000 0.5030 0.9999 1.000 0.9999

1.000 0.8903 0.9916 1.000 0.9916

1.000 0.2323 0.0437 0.8902 0.0389

Ours - VAE-like 1.000 0.0262 0.7054 1.000 0.7054
Ours - GMM-D 1.000 0.0144 0.9900 1.000 0.9900
Ours - GMM-PW  1.000 0.2630 0.9190 0.7636 0.7017

—— VAE-like

les / 2000

0.017%
0.0150
- 0.0125
E=
n
g2 00100
<]
) 0.0075
0.0050

0.0025

ay,
/ /;/

! ~,
NS
> N s

4 6
SA Score

0.0000

100 200 300 4.00
Heavy mol. weight

500



Possible solutions

* More expressive encoders, requiring
less information and smaller latent
spaces =2 graph pooling techniques

Different decoding strategies and
training objectives

Learning ZINC dataset

Model Validity Validity w/o check Uniqueness Novelty VUN

GraphNVP - 0.426 0.948 1.000 0.4038
GRF - 0.734 0.537 1.000 0.3942
GraphAF 1.000 0.68 0.991 1.000 0.9910
MoFlow 1.000 0.5030 0.9999 1.000 0.9999
GraphDF 1.000 0.8903 0.9916 1.000 0.9916
Ours - VAE 1.000 0.2323 0.0437 0.8902 0.0389
Ours - VAE-like 1.000 0.0262 0.7054 1.000 0.7054
Ours - GMM-D 1.000 0.0144 0.9900 1.000 0.9900
Ours - GMM-PW  1.000 0.2630 0.9190 0.7636 0.7017
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Several approaches for molecular
graph generation are available

Summary

Selectivity

| Synthesizability ‘

Target
information

Synthetic
accessibility

Biological
activity

Message
passing

GNN-based
deep learning
framework

compound




Several approaches for molecular
graph generation are available

No free lunch theorem applies,
but careful design choices enable
the selection of the right trade-
off for specific molecular design
challenges

Summary

Selectivity
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» Several approaches for molecular
graph generation are available

No free lunch theorem applies,
but careful design choices enable
the selection of the right trade-
off for specific molecular design
challenges

As an example, we introduced
AMCG model, deliberately
trading-off validity for speed and
fantasy

Summary

Selectivity

‘ Synthesizability ‘

oy |

Target
information

Synthetic
accessibility

Biologi - -
10 {.)g.'cal Simulation
activity

Message
passing

GNN-based
deep learning
framework
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(2024) AMCG a graph dual
atomic-molecular conditional molecular
generator. Machine Learning: Science
and Technology, 5(3), 035004.
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